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Stability of inviscid shear flow
over a flexible boundary
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The stability of an inviscid flow that comprises a thin shear layer and a uniform
outer flow over a flexible boundary is investigated. It is shown that the flow is
temporally unstable for all wavenumbers. This instability is either Kelvin–Helmholtz-
like or induced by the phase shift across the critical layer. The threshold of absolute
instability is determined in the form F = F∗(1 + Cεn) for ε � 1, where F (a Froude
number) and ε are, respectively, dimensionless measures of the flow speed and the
shear-layer thickness, F∗ is the limiting value of F for a uniform flow, C < 0 and n = 1
in the absence (as for a broken-line velocity profile) of a phase shift across the critical
layer, and C > 0 and n = 2/3 in the presence of such a phase shift. Explicit results
are determined for an elastic plate (and, in an Appendix, for a membrane) with a
broken-line, parabolic, or Blasius boundary-layer profile. The predicted threshold for
the broken-line profile agrees with Lingwood & Peake’s (1999) result for ε� 1, but
that for the Blasius profile contradicts their conclusion that the threshold for ε ↓ 0 is
a ‘singular and unattainable limit’.

1. Introduction
Following Miles (1957, 1959), Brazier-Smith & Scott (1984), Crighton & Oswell

(1991) and Lingwood & Peake (1999), I consider here a semi-infinite (y > 0), inviscid
shear flow U(y) over an infinitely long,† flexible surface, the displacement of which,
y = η(x, t), is governed by the equation of motion

Lη + m∂2
t η = −p(x, t) + f(x, t), (1)

where Lη is the stress resisting the displacement, m is the mass per unit area, p is the
surface-motion-induced pressure, and f represents external forcing.

Brazier-Smith & Scott consider monochromatic forcing of an elastic plate of
bending stiffness B (for which L = B∂4

x) in a uniform flow and obtain a numerical
description of absolute instability. Crighton & Oswell obtain analytical results for the
threshold of absolute instability for Brazier-Smith & Scott’s problem.

Lingwood & Peake (hereinafter referred to as LP) extend these studies to a shear
flow with either a broken-line (U = U1y/y1 in y 6 y1, U = U1 in y > y1) or a Blasius
boundary-layer profile. Their broken-line model permits an analytical determination
of the aerodynamic force but (as they recognize) neglects the phase shift across the
shear layer and predicts a decrease in threshold velocity with an increase in shear-
layer thickness. Their Blasius model predicts an increase in the threshold velocity
with an increase in shear-layer thickness.

† See Lucey (1998) for an extensive treatment of potential flow over panels of finite length.
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The primary goal of the present investigation is an analytical description of the
threshold conditions for a thin (compared with l ≡ m/ρ) shear layer embedded in a
uniform outer flow U1. In § 3, following Fourier transformation of the problem in § 2,
I construct an approximate solution of Rayleigh’s equation to obtain an analytical
representation of the induced aerodynamic loading and obtain explicit results for
LP’s broken-line profile and for a parabolic profile.

In § 4, I show that the flow is temporally unstable for all real wavenumbers. The
instability may be either Kelvin–Helmholtz-like or induced by the phase shift across
the critical layer, but the latter is much weaker than the former (the situation is
reminiscent of that for Charney’s model of baroclinic instability of the zonal wind
(Miles 1964)).

In § 5, I develop the necessary conditions for the threshold of absolute instability of
an elastic plate for 0 < ε� 1 through an expansion about the threshold for uniform
flow (ε = 0). This expansion yields the threshold F/F∗ = 1− 0.387ε for LP’s broken-
line profile and F/F∗ = 1 + Cε2/3 (C > 0) for a smooth profile with outer velocity
U1 and thickness y1, where F ≡ mU2

1 l
2/B is a Froude number, ε ≡ y1/l, and C is a

positive constant derived from conditions at the critical layer. The analysis in § 5 is
extended to a membrane in the Appendix.

The present results, although in agreement with LP for their broken-line profile,
contradict their conclusion that ‘as ε→ 0 the absolute instability boundary [for a
Blasius profile] is . . . a singular, and unattainable, limit . . . ’. I discuss this disagreement
in § 6.

2. Fourier transformation
Introducing the double Fourier-transform pair†

N(k, ω) =

∫ ∞
−∞

∫ ∞
−∞

e−i(kx−ωt)η(x, t) dx dt (2.1a)

and

η(x, t) = (2π)−2

∫ ∞
−∞

∫ ∞
−∞

ei(kx−ωt)N(k, ω) dk dω, (2.1b)

and similarly for p and f, and positing

LN = mω2
0(k)N (2.2)

and

P = ρZ(k, ω)N, (2.3)

where L is defined as in (1), ω0(k) is the natural frequency for a transverse oscillation of
the surface, Z is the aerodynamic impedance, and ρ is the fluid density, we transform
(1) to

{m[ω2
0(k)− ω2] + ρZ(k, ω)}N(k, ω) = F(k, ω). (2.4)

The present investigation is concerned primarily with the singularities of N(k, ω) and
does not require the specification of F(k, ω).

† The paths of integration in (2.1b) typically must be deformed into the complex-k and ω planes
to ensure convergence, and the corresponding limits of integration then are complex.
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3. Aerodynamic impedance
The fluid motion is governed by Rayleigh’s equation,

(U − c)Φ′′ −U ′′Φ = k2(U − c)Φ (′ ≡ d/dy), (3.1)

where Φ(y) is the Fourier transform of the perturbation stream function. We separate
the flow into: an inner domain, 0 < y < y1 � 1/|k|, in which

U(0+) = 0, U
′
(y) > 0, U

′
(y1−) = 0, U ′′(y) < 0, (3.2a–d )

and Φ is singular at y = yc (which may have a positive-imaginary part), where

U(yc) = ω/k ≡ c; (3.3)

an outer domain, y > y1, in which U = U1 and the flow is irrotational. (For the Blasius
profile, which has no definite upper boundary, y1 is a measure of the boundary-
layer displacement thickness; see § 5.3.) It follows from (3.2) that 0 < ωr/|k| < U1 is
necessary for the existence of the critical layer in the limit ωi ↓ 0 (the subscripts r and
i signify real and imaginary parts).

The linearized boundary conditions for the inner domain, which follow from the
vanishing of the normal velocity at the surface and the matching to the outer solution,
Φ ∝ exp (−γy) in y > y1, are

Φ = cN (y = 0), Φ
′
+ γΦ = 0 (y = y1), γ ≡ k sgn kr. (3.4a–c)

Following Heisenberg (Drazin & Reid 1981, p. 139), we expand Φ in k2. The first
approximation, which follows from the neglect of the right-hand side of (3.1), is

Φ(1)

N
= −(U − c)

[
1 + γ(U1 − c)2K(y)

1 + γ(U1 − c)2K0

]
, (3.5)

where

K(y) =

∫ y1

y

[U(η)− c]−2 dη, K0 ≡ K(0), (3.6a, b)

and the path of integration is indented under y = yc on the hypothesis that ci > 0.
The second approximation, which follows from the approximation of Φ by Φ(1) on
the right-hand side of (3.1), is

Φ(2) = Φ(1) + k2(U − c)
[[

∆

1 + ∆

] [
K0 −K
K0

]
Q(y1)− Q(y)

]
, (3.7)

where

∆ = γ(U1 − c)2K0, ∆i = −πγ(U1 − c)2(U ′′c /U
′3
c ) (3.8a, b)

and

Q(y) =

∫ y

0

dη

[U(η)− c]2

∫ y1

η

[U(ξ)− c]Φ(1)(ξ) dξ. (3.9)

The Fourier transform of the perturbation surface pressure is given by

P/ρ = NZ = [U
′
Φ− (U − c)Φ′]y=0. (3.10)

Substituting (3.7) into (3.10), we obtain

Z = −γ(U1 − c)2(1 + ∆)−1 + k2

∫ y1

0

[Φ(1)/N]2 dy (3.11a)

= −k(U1 − c)2[sgn kr − Γ + O(ε2)] (ε ≡ y1/l), (3.11b)
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where

Γ = k

∫ y1

0

[[
U1 − c
U − c

]2

−
[
U − c
U1 − c

]2
]

dy = O(ε), Γi = ∆isgn kr. (3.12a, b)

This is equivalent to LP’s (2.8), (A3) and (A4) except for a sign error (Dr Peake
agrees) in their F (but this sign error does not affect their stability calculations) and
their neglect of the phase shift across the critical layer.

We remark that if (3.2a) is relaxed c is replaced by c−U0 in (3.4a), but U0 enters
(3.11b) only through U(y).

4. Dispersion function
Substituting (3.11b) into (2.4), we obtain the dispersion function

D(k, ω) ≡ F(k, ω)/mN(k, ω) (4.1a)

= ω2
0(k)− ω2 − (γ/l)(U1 − c)2[1− Γ + O(ε2)] (4.1b)

= (U1/l)
2{σ2

0(k)− σ2 − k−1(k− σ)2[sgn kr − Γ + O(ε2)]}, (4.1c)

where l ≡ m/ρ is a characteristic length, and k ≡ kl, σ ≡ ωl/U1, and Γ are
dimensionless. Γ = 0 for a uniform flow (y1 ≡ 0), and

Γ = −εk
2(k2 − 8

3
kσ + 2σ2)

σ(k− σ)2
(4.2)

for LP’s broken-line profile (U = U1y/y1 in y < y1), which violates (3.2c, d).
Perhaps the simplest profile that satisfies all of (3.2a–d) is the parabola

U/U1 = 2ŷ − ŷ2, ŷ ≡ y/y1, (4.3a, b)

the substitution of which into (3.12) yields

Γ = 1
4
εk(1− ĉ)1/2

{
log

[
1 + (1− ĉ)1/2

1− (1− ĉ)1/2

]
+ iπ− 2ĉ−1(1− ĉ)1/2

}
−εk(1− ĉ)−2( 8

15
− 4

3
ĉ+ ĉ2), ĉ ≡ c

U1

=
σ

k
. (4.4a, b)

The flow is temporally unstable if σi > 0 for a zero of D. The zeros of (4.1c) for
k > 0 are given by

σ± =
k± r
1 + k

± 1

2

[
k2 ∓ r
1 + k

]2
Γ

r
+ O(ε2), r ≡ {k[σ2

0(1 + k)− k2]}1/2, (4.5a, b)

wherein the alternative signs are vertically ordered and Γ = O(ε). If

σ2
0 < k2/(1 + k) ≡ σ2

1 , r = i[k(1 + k)(σ2
1 − σ2

0)]1/2, (4.6a, b)

and σi+ > 0. If σ2
0 > σ2

1 , r > 0, and Γi > 0 implies σi+ > 0. It follows that the motion is
unstable for all σ0. But the instability for σ2

0 > σ2
1 , which is induced by the phase shift

across the critical layer, is much weaker than the Kelvin–Helmholtz-like instability
for σ2

0 < σ2
1 (cf. Miles 1959).

U(y) for the Blasius profile is available only as a series expansion or the numerical
solution of a differential equation, so that it is not possible to obtain an analytical
expression for Γ . However, the imaginary part of Γ , which suffices for the following
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(§ 5) threshold calculation, depends only on conditions at the critical layer, and the
real part of Γ may be approximated by (4.4) by approximating the Blasius profile by
a parabola.

5. Absolute instability for an elastic plate
The investigation of absolute instability requires the determination of the zeros of

kD, the counterpart of Crighton & Oswell’s (1991) P+(k), in kr > 0 and σi > 0. They
consider a uniform flow over a plate of bending stiffness B and areal mass density m,
for which

ω2
0 = Bk4/m, σ2

0 = k4/F, F ≡ mU2
1 l

2/B ≡ 1/G (5.1a–c)

in the present notation (the Froude number F is equivalent to their U2). Substituting
σ2

0 = Gk4 into (4.1c) and multiplying by (l/U1)
2k, we obtain

P(k) = Gk5 − kσ2 − (k− σ)2 + Pε(k) + O(ε2) (kr > 0), (5.2)

where

Pε(k) ≡ (k− σ)2Γ = O(ε). (5.3)

Pε = 0 for a uniform flow. Crighton & Oswell show that (5.2) then admits a pinch,
at which P(k) = P′(k) = 0, and that the threshold of absolute instability, at which
P = P′ = P′′ = 0, is given by

k∗ = 2(5/3)1/2 − 5
2

= 0.0820, σ∗ = (3/5)1/2k∗ = 0.0635, (5.4a, b)

and

F∗ = 1/G∗ = 10k3
∗ = 0.005512. (5.4c)

We proceed on the assumption that the pinch for a thin shear layer (0 < ε � 1)
can be obtained as a small perturbation of that for a uniform flow by expanding the
pinch conditions P = P′ = 0 about (5.4). Introducing

k̂ ≡ k− k∗, σ̂ ≡ σ − σ∗, Ĝ ≡ G− G∗, (5.5a–c)

solving kP′ − 5P = 0 for

k̂ = 4
3
(1− σ∗)σ̂ − i(Aσ̂ + Q)1/2 + O(σ̂3/2, εσ̂1/2), A = 4k∗σ∗/3, (5.6a, b)

and then eliminating k̂ from P′ = 0, we obtain

Cσ̂ − 2i(Dσ̂ + 10k3
∗Ĝ− k−2

∗ Q)(Aσ̂ + Q)1/2 + 5k4
∗Ĝ + 5k−1

∗ Pε∗ + O(σ̂2, εσ̂) = 0, (5.7a)

where

C = 2(1− 3σ∗), D = 4k−1
∗ (1− 4

3
σ∗), Q ≡ 1

3
(kP′ε − 5Pε)∗, (5.7b–d )

and Pε∗ and Q are evaluated at k = k∗ and σ = σ∗. We remark that the phase shift
across the critical layer implies Pεi > 0, which is stabilizing.

5.1. Broken-line profile

If the phase shift across the critical layer is absent (or neglected), Pε∗ and Q are real,
and σi = 0 requires Aσ̂ + Q = 0 in (5.7a), which then reduces to

−C(Q/A) + 5k4
∗Ĝ + 5k−1

∗ Pε∗ = 0. (5.8)

Combining (5.8) with the first-order approximation Ĝ = −(F− F∗)/F2
∗, we obtain

F/F∗ = 1− k−3
∗ (3.136Q− 0.820Pε∗) + O(ε2). (5.9)
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For LP’s broken-line profile,

Pε∗ = −ε[σ−1k2(k2 − 8
3
kσ + 2σ2)]∗ = −0.1735εk3

∗, Q = 0.2017εk3
∗, (5.10a, b)

the substitution of which into (5.9) yields

F/F∗ = 1− 0.775ε+ O(ε2). (5.11a)

This is equivalent to (cf. LP’s figure 2)

U = F1/2 = 0.0742[1− 0.387ε+ O(ε2)] (5.11b)

in LP’s notation and compares with

U = 0.0743[1− 0.388ε+ 0.125ε2 + O(ε3)] (5.12)

from their numerical data (provided by Dr Peake).

5.2. Critical-layer-induced instability

We now assume that Pε∗ and Q are complex and O(ε). Then σi > 0 requires σ̂ = O(ε2/3)
rather than O(ε), and the first approximation

σ̂ = −(5k4
∗/C)Ĝ ≡ σ̂1 (5.13)

leads to the second approximations

σ̂ = σ̂1 − (5/Ck∗)Pε + 2iC−1(Dσ̂1 + 10k3
∗Ĝ)(Aσ̂1)

1/2 + O(ε4/3). (5.14)

Setting σ̂i = 0, combining (5.3), (5.4), ĉ = σ∗/k∗, and (3.8b) to obtain

Pεi = (k∗ − σ∗)2∆i = k3
∗(1− ĉ)4E, E = −π(U2

1U
′′
c /lU

′3
c ), (5.15a, b)

and proceeding as above, we obtain the threshold of absolute instability

F = F∗[1 + 0.0855E2/3 + O(ε4/3)]. (5.16)

For the parabolic profile (4.3), for which yc/y1 = 0.525 and E = 7.34ε,

F = F∗[1 + 0.323ε2/3 + O(ε4/3)]. (5.17)

5.3. Blasius profile

The Blasius boundary-layer profile admits the expansion (Schlichting 1955, chap. VII f)

U

U1

=

∞∑
n=0

(−)nαn+1Cn

2n(3n+ 1)!
η3n+1, α = 0.332, C0 = C1 = 1, C2 = 11,

C3 = 375, C4 = 27, 897, · · · ,
(5.18)

where

η = y(U1/νx)1/2, y1 = 5.0(νx/U1)
1/2, (5.19a, b)

ν is the kinematic viscosity, x is the distance from the leading edge, and y1 now
is (by definition) the elevation at which U/U1 = 0.99. The critical layer, for which
U/U1 = ĉ = (3/5)1/2, lies at η = 2.60, for which E = 7.88ε, and (cf. (5.17))

F = F∗[1 + 0.34ε2/3 + O(ε4/3)]. (5.20)

6. Conclusions
I conclude that the threshold of absolute instability for an inviscid shear flow of

outer velocity U1, local thickness y1 and density ρ over an elastic plate of bending
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stiffness B and areal mass density m has the limiting (ε ↓ 0) form

F = F∗(1 + Cεn), (6.1)

where

ε = y1/l, l ≡ m/ρ, and F = mU2
1 l

2/B (6.2a–c)

is a Froude number; F∗ = 0.005512 is the limiting value of F for a uniform flow
(ε = 0). C < 0 and n = 1 in the absence of a critical-layer phase shift; in particular,
C = −0.775 for Lingwood & Peake’s (1999) broken-line profile. C > 0 and n = 2/3 for
a flow with a critical-layer phase shift; in particular, C = 0.332 for a parabolic profile,
and C = 0.34 for the Blasius boundary-layer profile (for which y1 is the elevation at
which U = 0.99U1).

This last result contradicts LP’s conclusion that ‘as ε → 0 the absolute instability
boundary [for a Blasius profile] is . . . a singular, and unattainable, limit . . . ’. I do not
know the source of this disagreement. The principal differences between their solution
and the present solution are that they do not restrict ε to be small and their solution
is numerical. I recognize that the assumption 0 < ε� 1, on which the present analysis
rests, precludes the global analysis that is required for a complete determination of the
pinch, but Crighton & Oswell (1991) have provided this analysis for ε = 0, and I argue
(following the suggestion of an anonymous referee) that their result provides a basis
for a small-perturbation continuation into 0 < ε� 1. This argument is supported by
the agreement between LP’s numerical solution and the present analytical solution
for the broken-line profile.

I am indebted to Dr Peake for stimulating correspondence and for the numerical
data for LP’s figure 2. This work was supported in part by the Division of Ocean
Sciences of the National Science Foundation Grant OCE98-03204, and by the Office
of Naval Research Grant N00014-92-J-1171.

Appendix. Membrane
The preceding analysis may be extended to any flexible boundary for which ω2

0 ∝
k2n. Perhaps the simplest, but still representative, example is a membrane stretched by
the uniform tension T (in the x-direction), for which ω2

0 = Tk2/m ≡ c2
0k

2 and

σ2
0 = k2/F, F ≡ U2

1/c
2
0 ≡ 1/G, (A 1a, b)

where c0 is the wave speed (which is constant for a membrane), and F is a Froude
number. The counterparts of (5.2) and (5.4) are

P(k) = Gk3 − kσ2 − (k− σ)2 + Pε(k) + O(ε2), (A 2)

k∗ = 2
√

3− 3 = 0.464, σ∗ = 2−√3 = 0.268, F∗ = 1/G∗ = 3k∗ = 1.393. (A 3a–c)

The elimination of k̂ ≡ k− k∗ between P(k) = P′(k) = 0 yields

k̂ = 2(1− σ∗)σ̂ − i(Aσ̂ + Q)1/2 + O(σ̂3/2), A = 2k∗σ∗, (A 4a, b)

and

Cσ̂ − 2i[2(1− σ∗)k−1
∗ σ̂ + 3k∗Ĝ](Aσ̂ + Q)1/2 + 3k2

∗Ĝ + 3k−1
∗ Pε = 0 (A 5a)

where

C = 2(1− 2σ∗), Q = kP′ε − 3Pε, (A 5b, c)
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in place of (5.6) and (5.7). Proceeding as in § 5.2, we obtain

σ̂ = σ̂1 − 3C−1k−1
∗ Pε + 2iC−1k∗(2σ̂1/

√
3)3/2, σ̂1 = −3C−1k2

∗Ĝ, (A 6a, b)

and

F/F∗ = 1 + 1.053k
−7/3
∗ P

2/3
εi , (A 7)

which reduces, through (5.15), to

F = F∗[1 + 0.0965ε2/3 + O(ε4/3)] (A 8)

for the parabolic profile.
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